# Swarming models with local alignment effects: phase transitions & hydrodynamics

J. A. Carrillo

Imperial College London

ITS, Zurich, 2017

| Modelling | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-----------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000 | 000000                          | 000000000000000                   | 00000                 |             |
|           |                                 |                                   |                       |             |

## Outline

## 1 Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

#### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

### 5 Conclusions

| Modelling                  | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|----------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| •00000000                  | 000000                          | 00000000000000                    | 00000                 |             |
| Collective Behavior Models |                                 |                                   |                       |             |

## Outline

## Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

#### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

### 5 Conclusions

Collective Behavior Models

# Individual Based Models (Particle models)

**Swarming** = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

#### Interaction regions between individuals<sup>a</sup>

- **Repulsion** Region:  $R_k$ .
- Attraction Region:  $A_k$ .
- Orientation Region: *O<sub>k</sub>*.



Conclusions

Collective Behavior Models

# Individual Based Models (Particle models)

**Swarming** = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

#### Interaction regions between individuals<sup>a</sup>

- **Repulsion** Region:  $R_k$ .
- Attraction Region:  $A_k$ .
- Orientation Region: *O<sub>k</sub>*.



Collective Behavior Models

# Individual Based Models (Particle models)

**Swarming** = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

#### Interaction regions between individuals<sup>a</sup>

- **Repulsion** Region:  $R_k$ .
- Attraction Region:  $A_k$ .
- Orientation Region:  $O_k$ .



Collective Behavior Models

# Individual Based Models (Particle models)

**Swarming** = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed s ocial organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

#### Interaction regions between individuals<sup>a</sup>

- **Repulsion** Region:  $R_k$ .
- Attraction Region:  $A_k$ .
- Orientation Region:  $O_k$ .



000000000

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

# 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\int \frac{dx_i}{dt} = v_i,$$
  
$$m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|).$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



000000000

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

# 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\int \frac{dx_i}{dt} = v_i,$$
  
$$m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|).$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



000000000

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

# 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\int \frac{dx_i}{dt} = v_i,$$
  
$$m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|).$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



000000000

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

# 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\int \frac{dx_i}{dt} = v_i,$$
  
$$m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|).$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

## Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:



Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

## Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases}
\frac{dx_i}{dt} = v_i, \\
\frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i),
\end{cases}$$

with the communication rate,  $\gamma \ge 0$ :

$$a_{ij} = a(|x_i - x_j|) = rac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking:  $\gamma < 1/2$ ; Cucker-Smale. General Proof for  $\gamma \le 1/2$ ; C.-Fornasier-Rosado-Toscani.

Global Stability for the full model: Albi-Balague-C.-VonBrecht (SIAM J. Appl. Math. 2014), C.-Huang-Martin (Nonlinear Analysis: Real World Applications 2014).

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

# Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\int \frac{dx_i}{dt} = v_i,$$
$$\frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i),$$

with the communication rate,  $\gamma \geq 0$ :

$$a_{ij} = a(|x_i - x_j|) = rac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking:  $\gamma < 1/2$ ; Cucker-Smale. General Proof for  $\gamma \le 1/2$ ; C.-Fornasier-Rosado-Toscani.

Global Stability for the full model: Albi-Balague-C.-VonBrecht (SIAM J. Appl. Math. 2014), C.-Huang-Martin (Nonlinear Analysis: Real World Applications 2014).

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Collective Behavior Models

## Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\left(\begin{array}{c} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} \left(v_j - v_i\right), \end{array}\right)$$

with the communication rate,  $\gamma \geq 0$ :

$$a_{ij} = a(|x_i - x_j|) = rac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking:  $\gamma < 1/2$ ; Cucker-Smale. General Proof for  $\gamma \le 1/2$ ; C.-Fornasier-Rosado-Toscani.

Global Stability for the full model: Albi-Balague-C.-VonBrecht (SIAM J. Appl. Math. 2014), C.-Huang-Martin (Nonlinear Analysis: Real World Applications 2014).

| Modelling  | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 0000000000 | 000000                          | 0000000000000000                  | 00000                 |             |
| Variations |                                 |                                   |                       |             |

## Outline



### Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

### 5 Conclusions

| Modelling  | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 0000000000 | 000000                          | 0000000000000000                  | 00000                 |             |
| Variations |                                 |                                   |                       |             |

## Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

$$\frac{dx_i}{dt} = v_i ,$$
  
$$\frac{dv_i}{dt} = \sum_{j \in \Sigma_i(t)} a(|x_i - x_j|)(v_j - v_i) ,$$

where  $\Sigma_i(t) \subset \{1, \ldots, N\}$  is the set of dependence, given by



Rigorous Mean-Field Limit: C.-Choi-Hauray-Salem, to appear in JEMS.

| Modelling  | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 0000000000 | 000000                          | 0000000000000000                  | 00000                 |             |
| Variations |                                 |                                   |                       |             |

## Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

$$\frac{dx_i}{dt} = v_i ,$$
  
$$\frac{dv_i}{dt} = \sum_{j \in \Sigma_i(t)} a(|x_i - x_j|)(v_j - v_i) ,$$

where  $\Sigma_i(t) \subset \{1, \ldots, N\}$  is the set of dependence, given by



Rigorous Mean-Field Limit: C.-Choi-Hauray-Salem, to appear in JEMS.

| Modelling<br>○○○○○○○●○○ | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Variations              |                                 |                                   |                       |             |
| A 1 1º D                | .т.•                            |                                   |                       |             |

Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

$$\begin{cases} \dot{x}_i = v_i, \\ dv_i = \left[ (\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|) \right] dt + \sqrt{2D} d\Gamma_i(t) , \end{cases}$$

where  $\Gamma_i(t)$  are *N* independent copies of standard Wiener processes with values in  $\mathbb{R}^d$  and  $\sigma > 0$  is the noise strength. The Cucker–Smale Particle Model with Noise:

$$\begin{cases} dx_i = v_i dt , \\ dv_i = \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) dt + \sqrt{2D \sum_{j=1}^m a(|x_j - x_i|)} d\Gamma_i(t) . \end{cases}$$

| Modelling<br>○○○○○○○●○○ | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Variations              |                                 |                                   |                       |             |
| A 1 1º D                | .т.•                            |                                   |                       |             |

Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

$$\begin{cases} \dot{x}_i = v_i, \\ dv_i = \left[ (\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|) \right] dt + \sqrt{2D} d\Gamma_i(t) , \end{cases}$$

where  $\Gamma_i(t)$  are *N* independent copies of standard Wiener processes with values in  $\mathbb{R}^d$  and  $\sigma > 0$  is the noise strength. The Cucker–Smale Particle Model with Noise:

$$\begin{cases} dx_i = v_i dt , \\ dv_i = \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) dt + \sqrt{2D \sum_{j=1}^m a(|x_j - x_i|)} d\Gamma_i(t) . \end{cases}$$

| Modelling          | From micro to macro: PDE models | Phase Transition for Cucker-Smale       | Reduced Hydrodynamics | Conclusions |
|--------------------|---------------------------------|-----------------------------------------|-----------------------|-------------|
| 0000000000         | 000000                          | 000000000000000000000000000000000000000 | 00000                 |             |
| Fixed Speed models |                                 |                                         |                       |             |

## Outline

### Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

#### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

### 5 Conclusions

| Modelling<br>○○○○○○○○● | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Fixed Speed models     |                                 |                                   |                       |             |
| <b>T 7</b> 1 4         | 1 1                             |                                   |                       |             |

Assume *N* particles moving at unit speed: reorientation & diffusion:

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2D} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j)\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in  $\mathbb{R}^d$ , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2} \,.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

| Modelling<br>○○○○○○○○● | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Fixed Speed models     |                                 |                                   |                       |             |
| <b>TT1 1</b>           | 4 4                             |                                   |                       |             |

Assume *N* particles moving at unit speed: reorientation & diffusion:

$$\begin{cases} dX_t^i = V_t^i \, dt, \\ dV_t^i = \sqrt{2D} \, P(V_t^i) \circ dB_t^i - P(V_t^i) \left( \frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j) (V_t^i - V_t^j) \right) \, dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in  $\mathbb{R}^d$ , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2} \,.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

| Modelling              | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Fixed Speed models     |                                 |                                   |                       |             |
| <b>T</b> 7° <b>1</b> 9 | 1 1                             |                                   |                       |             |

Assume *N* particles moving at unit speed: reorientation & diffusion:

$$\begin{cases} dX_t^i = V_t^i \, dt, \\ dV_t^i = \sqrt{2D} \, P(V_t^i) \circ dB_t^i - P(V_t^i) \left( \frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j) (V_t^i - V_t^j) \right) \, dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in  $\mathbb{R}^d$ , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

| Modelling                   | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-----------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000                   | 000000                          | 0000000000000000                  | 00000                 |             |
| Fixed Speed models          |                                 |                                   |                       |             |
| <b>T</b> 7 <sup>0</sup> 1 9 | 1 1                             |                                   |                       |             |

Assume *N* particles moving at unit speed: reorientation & diffusion:

$$\begin{cases} dX_t^i = V_t^i \, dt, \\ dV_t^i = \sqrt{2D} \, P(V_t^i) \circ dB_t^i - P(V_t^i) \left( \frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j) (V_t^i - V_t^j) \right) \, dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in  $\mathbb{R}^d$ , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2} \,.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

| Modelling                   | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-----------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000                   | 000000                          | 0000000000000000                  | 00000                 |             |
| Fixed Speed models          |                                 |                                   |                       |             |
| <b>T</b> 7 <sup>0</sup> 1 9 | 1 1                             |                                   |                       |             |

Assume *N* particles moving at unit speed: reorientation & diffusion:

$$\begin{cases} dX_t^i = V_t^i \, dt, \\ dV_t^i = \sqrt{2D} \, P(V_t^i) \circ dB_t^i - P(V_t^i) \left( \frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j) (V_t^i - V_t^j) \right) \, dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in  $\mathbb{R}^d$ , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2} \,.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

| Modelling          | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|--------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000          | ● <b>○○</b> ○○○                 | 000000000000000                   | 00000                 |             |
| Vlasov-like Models |                                 |                                   |                       |             |

# Outline

## Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

### 2) From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

## 5 Conclusions

Modelling 000000000 Vlasov-like Models From micro to macro: PDE models

Conclusions

# Convergence of the particle method

Empirical measures: if  $x_i, v_i : [0, T) \to \mathbb{R}^d$ , for i = 1, ..., N, is a solution to the ODE system,

![](_page_27_Figure_7.jpeg)

then the  $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$  given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with  $\sum_{i=1}^N m_i = 1$ ,

From micro to macro: PDE models 00000

Conclusions

# Convergence of the particle method

Empirical measures: if  $x_i, v_i : [0, T) \to \mathbb{R}^d$ , for i = 1, ..., N, is a solution to the ODE system,

![](_page_28_Figure_7.jpeg)

then the  $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$  given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with  $\sum_{i=1}^N m_i = 1$ ,

From micro to macro: PDE models

Conclusions

# Convergence of the particle method

Empirical measures: if  $x_i, v_i : [0, T) \to \mathbb{R}^d$ , for i = 1, ..., N, is a solution to the ODE system,

![](_page_29_Figure_7.jpeg)

then the  $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$  given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with  $\sum_{i=1}^N m_i = 1$ ,

From micro to macro: PDE models 00000

Conclusions

# Convergence of the particle method

Empirical measures: if  $x_i, v_i : [0, T) \to \mathbb{R}^d$ , for i = 1, ..., N, is a solution to the ODE system,

![](_page_30_Figure_7.jpeg)

then the  $f_N : [0, T) \to \mathcal{P}_1(\mathbb{R}^d)$  given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$
 with  $\sum_{i=1}^N m_i = 1$ ,

| Modelling<br>0000000000<br>Vlasov-like Models | From micro to macro: PDE models<br>OO●○○○ | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-----------------------------------------------|-------------------------------------------|-----------------------------------|-----------------------|-------------|
| Mesoscor                                      | pic models                                |                                   |                       |             |

Model with asymptotic velocity + Attraction/Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \operatorname{div}_v[(\alpha - \beta |v|^2)vf] - \operatorname{div}_v[(\nabla_x U \star \rho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[ \underbrace{\left( \int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[ (\nabla_x U \star \rho) f \right] = \nabla_v \cdot \left[ \xi(f)(x, v, t) f(x, v, t) \right].$$

Rigorous proofs of the mean field limit: Cañizo-C.-Rosado (M3AS 2010), Bolley-Cañizo-Rosado (M3AS 2011), C.-Choi-Hauray (Springer Verlag 2012).

| Modelling<br>000000000<br>Vlasov-like Models | From micro to macro: PDE models<br>OO●000 | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|----------------------------------------------|-------------------------------------------|-----------------------------------|-----------------------|-------------|
| Mesoscop                                     | oic models                                |                                   |                       |             |

Model with asymptotic velocity + Attraction/Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \operatorname{div}_v[(\alpha - \beta |v|^2)vf] - \operatorname{div}_v[(\nabla_x U \star \rho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[ \underbrace{\left( \int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[ (\nabla_x U \star \rho) f \right] = \nabla_v \cdot \left[ \xi(f)(x, v, t) f(x, v, t) \right].$$

Rigorous proofs of the mean field limit: Cañizo-C.-Rosado (M3AS 2010), Bolley-Cañizo-Rosado (M3AS 2011), C.-Choi-Hauray (Springer Verlag 2012).

| Modelling<br>000000000<br>Vlasov-like Models | From micro to macro: PDE models $OO = O O O$ | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|----------------------------------------------|----------------------------------------------|-----------------------------------|-----------------------|-------------|
| Mesoscop                                     | bic models                                   |                                   |                       |             |

Model with asymptotic velocity + Attraction/Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \operatorname{div}_v[(\alpha - \beta |v|^2)vf] - \operatorname{div}_v[(\nabla_x U \star \rho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[ \underbrace{\left( \int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[ (\nabla_x U \star \rho) f \right] = \nabla_v \cdot \left[ \xi(f)(x, v, t) f(x, v, t) \right].$$

Rigorous proofs of the mean field limit: Cañizo-C.-Rosado (M3AS 2010), Bolley-Cañizo-Rosado (M3AS 2011), C.-Choi-Hauray (Springer Verlag 2012).

| Modelling                               | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-----------------------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000                               | 00000                           | 000000000000000                   | 00000                 |             |
| Fixed Speed Models as Asymptotic Limits |                                 |                                   |                       |             |

# Outline

## 1 Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

### 2) From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

### 5 Conclusions

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Fixed Speed Models as Asymptotic Limits

## Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_{t}f^{\varepsilon} + v \cdot \nabla_{x}f^{\varepsilon} + a^{\varepsilon}(t,x) \cdot \nabla_{v}f^{\varepsilon} + \frac{1}{\varepsilon}\operatorname{div}_{v}\{f^{\varepsilon}(\alpha - \beta|v|^{2})v\} = 0, \quad (t,x,v) \in \mathbb{R}_{+} \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t,\cdot) = -\nabla_{x}U \star \rho^{\varepsilon}(t,\cdot) - H \star f^{\varepsilon}(t,\cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$$
  
$$\partial_{t}f + \operatorname{div}_{x}(fv) + \operatorname{div}_{v}(fa(t, x)) + \operatorname{div}_{v}\{f^{(1)}(\alpha - \beta |v|^{2})v\} = 0,$$

up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the field  $(\alpha - \beta |v|^2)v \cdot \nabla_v$ , functions of *x* and v/|v|.
ModellingFrom micro to macro: PDE models000000000000000

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Fixed Speed Models as Asymptotic Limits

## Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_v f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_v \{ f^{\varepsilon}(\alpha - \beta |v|^2) v \} = 0, \quad (t, x, v) \in \mathbb{R}_+ \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_x U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$$
  
$$\partial_{t}f + \operatorname{div}_{x}(fv) + \operatorname{div}_{v}(fa(t, x)) + \operatorname{div}_{v}\{f^{(1)}(\alpha - \beta |v|^{2})v\} = 0,$$

up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the field  $(\alpha - \beta |v|^2)v \cdot \nabla_v$ , functions of *x* and v/|v|.

From micro to macro: PDE models

Conclusions

Fixed Speed Models as Asymptotic Limits

## Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_v f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_v \{ f^{\varepsilon}(\alpha - \beta |v|^2) v \} = 0, \quad (t, x, v) \in \mathbb{R}_+ \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_x U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$$
  
$$\partial_{t}f + \operatorname{div}_{x}(fv) + \operatorname{div}_{v}(fa(t, x)) + \operatorname{div}_{v}\{f^{(1)}(\alpha - \beta |v|^{2})v\} = 0,$$
  
up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the field  $(\alpha - \beta |v|^2) v \cdot \nabla_v$ , functions of x and v/|v|.

From micro to macro: PDE models

Phase Transition for Cucker-Smale 

Reduced Hydrodynamics 00000

Conclusions

Fixed Speed Models as Asymptotic Limits

## Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_v f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_v \{ f^{\varepsilon}(\alpha - \beta |v|^2) v \} = 0, \quad (t, x, v) \in \mathbb{R}_+ \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_x U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$$
  
$$\partial_{t}f + \operatorname{div}_{x}(fv) + \operatorname{div}_{v}(fa(t, x)) + \operatorname{div}_{v}\{f^{(1)}(\alpha - \beta |v|^{2})v\} = 0,$$

up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the field  $(\alpha - \beta |v|^2) v \cdot \nabla_v$ , functions of x and v/|v|.

0000000000

From micro to macro: PDE models

Conclusions

Fixed Speed Models as Asymptotic Limits

## Vicsek Model as Asymptotic Limit

#### Bostan-C. (M3AS 2013)

Assume that  $U \in C_b^2(\mathbb{R}^d)$ , H(x, v) = h(x)v with  $h \in C_b^1(\mathbb{R}^d)$  nonnegative,  $f^{\text{in}} \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d)$ ,  $\text{supp} f^{\text{in}} \subset \{(x, v) : |x| \le L_0, r_0 \le |v| \le R_0\}$ .

Then for all  $\delta > 0$ , the sequence  $(f^{\varepsilon})_{\varepsilon}$  converges towards the measure solution  $f(t, x, \omega)$  on  $(x, \omega) \in \mathbb{R}^d \times \sqrt{\alpha/\beta} \mathbb{S}$  of the problem

$$\partial_t f + \operatorname{div}_x(f\omega) - \operatorname{div}_\omega \left\{ f\left(I - \frac{1}{r^2}(\omega \otimes \omega)\right) \left(\nabla_x U \star \rho + H \star f\right) \right\} = 0$$

with initial data  $f(0) = \langle f^{\text{in}} \rangle$ .

Remarks:

- Adding noise we get from  $\Delta_{v}f$  to the Laplace-Beltrami operator on the sphere  $\Delta_{\omega}f$ . We only know how to perform the formal expansion but not the rigorous limit.
- This formally shows that the fixed speed limit of the Cucker-Smale's model is the Vicsek's model.

0000000000

From micro to macro: PDE models

Reduced Hydrodynamics

Conclusions

Fixed Speed Models as Asymptotic Limits

# Vicsek Model as Asymptotic Limit

#### Bostan-C. (M3AS 2013)

Assume that  $U \in C_b^2(\mathbb{R}^d)$ , H(x, v) = h(x)v with  $h \in C_b^1(\mathbb{R}^d)$  nonnegative,  $f^{\text{in}} \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d)$ ,  $\operatorname{supp} f^{\text{in}} \subset \{(x, v) : |x| \le L_0, r_0 \le |v| \le R_0\}$ .

Then for all  $\delta > 0$ , the sequence  $(f^{\varepsilon})_{\varepsilon}$  converges towards the measure solution  $f(t, x, \omega)$  on  $(x, \omega) \in \mathbb{R}^d \times \sqrt{\alpha/\beta} \mathbb{S}$  of the problem

$$\partial_t f + \operatorname{div}_x(f\omega) - \operatorname{div}_\omega \left\{ f\left(I - \frac{1}{r^2}(\omega \otimes \omega)\right) \left(\nabla_x U \star \rho + H \star f\right) \right\} = 0$$

with initial data  $f(0) = \langle f^{\text{in}} \rangle$ .

Remarks:

- Adding noise we get from  $\Delta_v f$  to the Laplace-Beltrami operator on the sphere  $\Delta_{\omega} f$ . We only know how to perform the formal expansion but not the rigorous limit.
- This formally shows that the fixed speed limit of the Cucker-Smale's model is the Vicsek's model.

0000000000

From micro to macro: PDE models

Conclusions

Fixed Speed Models as Asymptotic Limits

## Vicsek Model as Asymptotic Limit

#### Bostan-C. (M3AS 2013)

Assume that  $U \in C_b^2(\mathbb{R}^d)$ , H(x, v) = h(x)v with  $h \in C_b^1(\mathbb{R}^d)$  nonnegative,  $f^{\text{in}} \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d)$ ,  $\text{supp} f^{\text{in}} \subset \{(x, v) : |x| \le L_0, r_0 \le |v| \le R_0\}$ .

Then for all  $\delta > 0$ , the sequence  $(f^{\varepsilon})_{\varepsilon}$  converges towards the measure solution  $f(t, x, \omega)$  on  $(x, \omega) \in \mathbb{R}^d \times \sqrt{\alpha/\beta} \mathbb{S}$  of the problem

$$\partial_t f + \operatorname{div}_x(f\omega) - \operatorname{div}_\omega \left\{ f\left(I - \frac{1}{r^2}(\omega \otimes \omega)\right) \left(\nabla_x U \star \rho + H \star f\right) \right\} = 0$$

with initial data  $f(0) = \langle f^{\text{in}} \rangle$ .

Remarks:

- Adding noise we get from  $\Delta_v f$  to the Laplace-Beltrami operator on the sphere  $\Delta_{\omega} f$ . We only know how to perform the formal expansion but not the rigorous limit.
- This formally shows that the fixed speed limit of the Cucker-Smale's model is the Vicsek's model.

| Modelling  |
|------------|
| 0000000000 |

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Local Cucker-Smale Model

# Outline

## 1 Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

### 4 Reduced Hydrodynamics

• Asymptotic limit

### 5 Conclusions

0000000000

From micro to macro: PDE models

Conclusions

Local Cucker-Smale Model

## The Local Cucker-Smale model with noise

• We consider the following kinetic flocking model:

$$\partial_t f + v \nabla_x f = \nabla_v \cdot \left( (v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right),$$

where

$$u_f(t,x) = \frac{\int vf(t,x,v) \, dv}{\int f(t,x,v) \, dv}$$

- The first term is a Cucker-Smale-like term, encourages the velocity to align with the mean velocity
- The second term provides self-propulsion and friction, encouraging unit velocities
- The last term captures the influence of noise in the velocity

#### From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

# Outline

000000000

### 1 Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

#### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration
- 4 Reduced Hydrodynamics• Asymptotic limit

### 5 Conclusions

000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

# The homogeneous problem

• Looking at the spatially homogeneous problem:

$$\partial_t f = \nabla_v \cdot \left( (v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right)$$

- We have a gradient flow structure: write the equation as  $\partial_t f = \nabla_v \cdot (f \nabla_v \xi)$  with  $\xi = \Phi(v) + W * f + D \log f$ 
  - Confinement in v:  $\Phi(v) = \alpha \left( \frac{|v|^4}{4} \frac{|v|^2}{2} \right)$
  - Interaction potential of the form  $W(v) = \frac{|v|^2}{2}$
  - Linear diffusion.
- Our model is continuity equation with velocity field of the form  $-\nabla_{\nu}\xi$
- Natural entropy for this equation given by the free energy of the system:

$$\begin{aligned} \mathcal{F}[f] &:= \int_{\mathbb{R}^d} \Phi(v) f(v) \, dv + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v - w) f(v) f(w) \, dw \, dv + D \int_{\mathbb{R}^d} f(v) \log f(v) \, dv \\ &= \int_{\mathbb{R}^d} \left( \alpha \frac{|v|^4}{4} + (1 - \alpha) \frac{|v|^2}{2} \right) f(v) \, dv - \frac{1}{2} |u_f|^2 + D \int_{\mathbb{R}^d} f \log f(v) \, dv \,, \end{aligned}$$

0000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

# The homogeneous problem

• Looking at the spatially homogeneous problem:

$$\partial_t f = \nabla_v \cdot \left( (v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right)$$

- We have a gradient flow structure: write the equation as  $\partial_t f = \nabla_v \cdot (f \nabla_v \xi)$  with  $\xi = \Phi(v) + W * f + D \log f$ 
  - Confinement in v:  $\Phi(v) = \alpha \left( \frac{|v|^4}{4} \frac{|v|^2}{2} \right)$
  - Interaction potential of the form  $W(v) = \frac{|v|^2}{2}$
  - Linear diffusion.

#### • Our model is continuity equation with velocity field of the form $-\nabla_{v}\xi$

• Natural entropy for this equation given by the free energy of the system:

$$\begin{aligned} \mathcal{F}[f] &:= \int_{\mathbb{R}^d} \Phi(v) f(v) \, dv + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v - w) f(v) f(w) \, dw \, dv + D \int_{\mathbb{R}^d} f(v) \log f(v) \, dv \\ &= \int_{\mathbb{R}^d} \left( \alpha \frac{|v|^4}{4} + (1 - \alpha) \frac{|v|^2}{2} \right) f(v) \, dv - \frac{1}{2} |u_f|^2 + D \int_{\mathbb{R}^d} f \log f(v) \, dv \,, \end{aligned}$$

0000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

# The homogeneous problem

• Looking at the spatially homogeneous problem:

$$\partial_t f = \nabla_v \cdot \left( (v - u_f) f - \alpha v (1 - |v|^2) f + D \nabla_v f \right)$$

- We have a gradient flow structure: write the equation as  $\partial_t f = \nabla_v \cdot (f \nabla_v \xi)$  with  $\xi = \Phi(v) + W * f + D \log f$ 
  - Confinement in v:  $\Phi(v) = \alpha \left( \frac{|v|^4}{4} \frac{|v|^2}{2} \right)$
  - Interaction potential of the form  $W(v) = \frac{|v|^2}{2}$
  - Linear diffusion.
- Our model is continuity equation with velocity field of the form  $-\nabla_{\nu}\xi$
- Natural entropy for this equation given by the free energy of the system:

$$\begin{aligned} \mathcal{F}[f] &:= \int_{\mathbb{R}^d} \Phi(v) f(v) \, dv + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} W(v - w) f(v) f(w) \, dw \, dv + D \int_{\mathbb{R}^d} f(v) \log f(v) \, dv \\ &= \int_{\mathbb{R}^d} \left( \alpha \frac{|v|^4}{4} + (1 - \alpha) \frac{|v|^2}{2} \right) f(v) \, dv - \frac{1}{2} |u_f|^2 + D \int_{\mathbb{R}^d} f \log f(v) \, dv \,, \end{aligned}$$

0000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

# The stationary solutions

• We consider stationary solutions of the form:

$$f(v) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|v|^4}{4} + (1-\alpha) \frac{|v|^2}{2} - u_f \cdot v\right]\right)$$

• We see that in order for the stationary solution to exist,  $u_f$  must be a root of the equation:

$$\mathcal{H}(u,D) = \int (v-u)f(v)dv$$

- We prove that, in any dimension<sup>1</sup>
  - There is a region of parameter space with only one such root, namely u = 0
  - There is another region of parameter space with more than one root, u = 0 and |u| = C<sub>α,D</sub> ≠ 0

<sup>&</sup>lt;sup>1</sup>1D case was proven independently in J. Tugaut's *Phase transitions of McKean-Vlasov* processes in symmetric and asymmetric multi-wells landscape, and S. Herrmann and J. Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes

0000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

# The stationary solutions

• We consider stationary solutions of the form:

$$f(v) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|v|^4}{4} + (1-\alpha) \frac{|v|^2}{2} - u_f \cdot v\right]\right)$$

• We see that in order for the stationary solution to exist,  $u_f$  must be a root of the equation:

$$\mathcal{H}(u,D) = \int (v-u)f(v)dv$$

- We prove that, in any dimension<sup>1</sup>
  - There is a region of parameter space with only one such root, namely u = 0
  - There is another region of parameter space with more than one root, u = 0 and |u| = C<sub>α,D</sub> ≠ 0

<sup>&</sup>lt;sup>1</sup>1D case was proven independently in J. Tugaut's *Phase transitions of McKean-Vlasov* processes in symmetric and asymmetric multi-wells landscape, and S. Herrmann and J. Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes

0000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

# The stationary solutions

• We consider stationary solutions of the form:

$$f(v) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|v|^4}{4} + (1-\alpha) \frac{|v|^2}{2} - u_f \cdot v\right]\right)$$

• We see that in order for the stationary solution to exist,  $u_f$  must be a root of the equation:

$$\mathcal{H}(u,D) = \int (v-u)f(v)dv$$

- We prove that, in any dimension<sup>1</sup>
  - There is a region of parameter space with only one such root, namely u = 0
  - There is another region of parameter space with more than one root, u = 0 and |u| = C<sub>α,D</sub> ≠ 0

<sup>&</sup>lt;sup>1</sup>1D case was proven independently in J. Tugaut's *Phase transitions of McKean-Vlasov* processes in symmetric and asymmetric multi-wells landscape, and S. Herrmann and J. Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes

| Modelling<br>0000000000      | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Phase Transition driven by N | Voise                           |                                   |                       |             |
| $\mathcal{H}(u,D)$           |                                 |                                   |                       |             |



| Modelling                        | From micro to macro: PDE models | Phase Transition for Cucker-Smale       | Reduced Hydrodynamics | Conclusions |
|----------------------------------|---------------------------------|-----------------------------------------|-----------------------|-------------|
| 000000000                        | 000000                          | 000000000000000000000000000000000000000 | 00000                 |             |
| Phase Transition driven by Noise |                                 |                                         |                       |             |



#### • Our proof hinges Laplace's method and the behavior of $\mathcal{H}(u, D)$ as D varies:

- For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
- For large D,  $\frac{\partial \mathcal{H}}{\partial u}$  is negative for all u.
- Since we know that u = 0 is a solution for all *D*, this shows that there is more than one root of  $\mathcal{H}$  for small *D*, and only one root for large *D*

| Modelling                    | From micro to macro: PDE models | Phase Transition for Cucker-Smale       | Reduced Hydrodynamics | Conclusions |
|------------------------------|---------------------------------|-----------------------------------------|-----------------------|-------------|
| 000000000                    | 000000                          | 000000000000000000000000000000000000000 | 00000                 |             |
| Phase Transition driven by N | oise                            |                                         |                       |             |



- Our proof hinges Laplace's method and the behavior of  $\mathcal{H}(u, D)$  as D varies:
  - For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
  - For large D,  $\frac{\partial \mathcal{H}}{\partial u}$  is negative for all u.
- Since we know that u = 0 is a solution for all *D*, this shows that there is more than one root of  $\mathcal{H}$  for small *D*, and only one root for large *D*

| Modelling                    | From micro to macro: PDE models | Phase Transition for Cucker-Smale       | Reduced Hydrodynamics | Conclusions |
|------------------------------|---------------------------------|-----------------------------------------|-----------------------|-------------|
| 000000000                    | 000000                          | 000000000000000000000000000000000000000 | 00000                 |             |
| Phase Transition driven by N | oise                            |                                         |                       |             |
|                              |                                 |                                         |                       |             |



- Our proof hinges Laplace's method and the behavior of  $\mathcal{H}(u, D)$  as D varies:
  - For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
  - For large D,  $\frac{\partial \mathcal{H}}{\partial u}$  is negative for all u.
- Since we know that u = 0 is a solution for all *D*, this shows that there is more than one root of  $\mathcal{H}$  for small *D*, and only one root for large *D*

| Modelling                    | From micro to macro: PDE models | Phase Transition for Cucker-Smale       | Reduced Hydrodynamics | Conclusions |
|------------------------------|---------------------------------|-----------------------------------------|-----------------------|-------------|
| 000000000                    | 000000                          | 000000000000000000000000000000000000000 | 00000                 |             |
| Phase Transition driven by N | oise                            |                                         |                       |             |
|                              |                                 |                                         |                       |             |



- Our proof hinges Laplace's method and the behavior of  $\mathcal{H}(u, D)$  as D varies:
  - For small *D*, we are able to use Laplace's Method to show that there is a nonzero stationary solution
  - For large D,  $\frac{\partial \mathcal{H}}{\partial u}$  is negative for all u.
- Since we know that u = 0 is a solution for all *D*, this shows that there is more than one root of  $\mathcal{H}$  for small *D*, and only one root for large *D*

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

# The case of small D

Find *u* such that it is a root of  $\mathcal{H}(u, D)$ , i.e. as  $D \to 0$ ,

$$u = \frac{\int \exp\left(-\frac{1}{D}P_u(v)\right)v_1dv}{\int \exp\left(-\frac{1}{D}P_u(v)\right)dv}$$
(1)

Laplace's Method tells us that this *u* must be such that

$$u \approx \frac{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right) \tilde{v}_1}{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right)}$$
(2)

where  $\tilde{v}$  is the global minimum of  $P_u(v)$ .

- Find the minima of  $P_u(v) = \alpha \frac{|v|^4}{4} + (1 \alpha) \frac{|v|^2}{2} uv_1$
- This global minimum is strictly positive
- Hence, there is a nonzero stationary solution in addition to u=0

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

# The case of small D

Find *u* such that it is a root of  $\mathcal{H}(u, D)$ , i.e. as  $D \to 0$ ,

$$u = \frac{\int \exp\left(-\frac{1}{D}P_u(v)\right)v_1dv}{\int \exp\left(-\frac{1}{D}P_u(v)\right)dv}$$
(1)

Laplace's Method tells us that this *u* must be such that

$$u \approx \frac{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right) \tilde{v}_1}{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right)}$$
(2)

where  $\tilde{v}$  is the global minimum of  $P_u(v)$ .

- Find the minima of  $P_u(v) = \alpha \frac{|v|^4}{4} + (1 \alpha) \frac{|v|^2}{2} uv_1$
- This global minimum is strictly positive
- Hence, there is a nonzero stationary solution in addition to u=0

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

# The case of small D

Find *u* such that it is a root of  $\mathcal{H}(u, D)$ , i.e. as  $D \to 0$ ,

$$u = \frac{\int \exp\left(-\frac{1}{D}P_u(v)\right)v_1dv}{\int \exp\left(-\frac{1}{D}P_u(v)\right)dv}$$
(1)

Laplace's Method tells us that this *u* must be such that

$$u \approx \frac{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right) \tilde{v}_1}{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right)}$$
(2)

where  $\tilde{v}$  is the global minimum of  $P_u(v)$ .

- Find the minima of  $P_u(v) = \alpha \frac{|v|^4}{4} + (1 \alpha) \frac{|v|^2}{2} uv_1$
- This global minimum is strictly positive
- Hence, there is a nonzero stationary solution in addition to u=0

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

# The case of small D

Find *u* such that it is a root of  $\mathcal{H}(u, D)$ , i.e. as  $D \to 0$ ,

$$u = \frac{\int \exp\left(-\frac{1}{D}P_u(v)\right)v_1dv}{\int \exp\left(-\frac{1}{D}P_u(v)\right)dv}$$
(1)

Laplace's Method tells us that this *u* must be such that

$$u \approx \frac{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right) \tilde{v}_1}{(2\pi D)^{\frac{d}{2}} |H(P_u(\tilde{v}))|^{-\frac{1}{2}} \exp\left(-\frac{1}{D} P_u(\tilde{v})\right)}$$
(2)

where  $\tilde{v}$  is the global minimum of  $P_u(v)$ .

- Find the minima of  $P_u(v) = \alpha \frac{|v|^4}{4} + (1 \alpha) \frac{|v|^2}{2} uv_1$
- This global minimum is strictly positive
- Hence, there is a nonzero stationary solution in addition to u=0

0000000000

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

## The case of $D \to \infty$

#### • We show that $\mathcal{H}$ is strictly decreasing in u for $D \to \infty$

- We split the derivative into two pieces, one positive and one negative, and show that the negative piece compensates for the positive
- This shows that  $\mathcal{H}$  can have at most one zero for large D

0000000000

From micro to macro: PDE models

Conclusions

Phase Transition driven by Noise

## The case of $D \to \infty$

- We show that  $\mathcal{H}$  is strictly decreasing in u for  $D \to \infty$ 
  - We split the derivative into two pieces, one positive and one negative, and show that the negative piece compensates for the positive
  - This shows that  $\mathcal{H}$  can have at most one zero for large D

0000000000

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Phase Transition driven by Noise

# The case of $D \to \infty$

- We show that  $\mathcal{H}$  is strictly decreasing in u for  $D \to \infty$ 
  - We split the derivative into two pieces, one positive and one negative, and show that the negative piece compensates for the positive
  - This shows that  $\mathcal{H}$  can have at most one zero for large D

| Modelling<br>0000000000 | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Numerical Exploration   |                                 |                                   |                       |             |

# Outline

### 1 Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

#### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration
- 4 Reduced Hydrodynamics• Asymptotic limit

### 5 Conclusions

| Modelling<br>0000000000 | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Numerical Exploration   |                                 |                                   |                       |             |
| <b>Varying</b> $\alpha$ | and D                           |                                   |                       |             |

- We have proven analytically that for small *D*, there is more than one stationary solutions, while for large *D*, there is only one
- Now, numerically consider where in parameter space each of these situations occur
  - Vary  $\alpha$  and D and count the number of roots of  $\mathcal{H}$
  - Compare also to where  $\frac{\partial \mathcal{H}}{\partial u}$  is positive and negative

| Modelling<br>000000000  | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Numerical Exploration   |                                 |                                   |                       |             |
| <b>Varying</b> $\alpha$ | and D                           |                                   |                       |             |

- We have proven analytically that for small *D*, there is more than one stationary solutions, while for large *D*, there is only one
- Now, numerically consider where in parameter space each of these situations occur
  - Vary  $\alpha$  and D and count the number of roots of  $\mathcal{H}$
  - Compare also to where  $\frac{\partial \mathcal{H}}{\partial u}$  is positive and negative

From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Numerical Exploration

## The roots of $\mathcal{H}$ plotted against D in 2D



From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Numerical Exploration

## Numerical exploration, varying $\alpha$ and D in 2D



From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Numerical Exploration

## Exploring the limit $\alpha \to \infty$ in 2D



From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Numerical Exploration

## Stability of the stationary solutions in 1D



From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Numerical Exploration

000000000

## Comparing particles to f in 1D



| Modelling<br>0000000000 | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics<br>●0000 | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|--------------------------------|-------------|
| Asymptotic limit        |                                 |                                   |                                |             |

# Outline

### 1 Modelling

- Collective Behavior Models
- Variations
- Fixed Speed models

#### 2 From micro to macro: PDE models

- Vlasov-like Models
- Fixed Speed Models as Asymptotic Limits

#### 3 Phase Transition for Cucker-Smale

- Local Cucker-Smale Model
- Phase Transition driven by Noise
- Numerical Exploration

# Reduced Hydrodynamics Asymptotic limit

Asymptotic limit

### 5 Conclusions
Modelling 0000000000 From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics

Conclusions

Asymptotic limit

# Hydrodynamics via Asymptotic Limit

Bostan-C. (M3AS 2017)

Given a solution to

$$\partial_t f^{\varepsilon} + \operatorname{div}_x(f^{\varepsilon}v) + \frac{1}{\varepsilon^2} \operatorname{div}_v(f^{\varepsilon}(\alpha - \beta |v|^2)v) = \frac{1}{\varepsilon} \operatorname{div}_v\{f^{\varepsilon}(v - u[f^{\varepsilon}]) + \sigma \nabla_v f^{\varepsilon}\}$$

for any  $\sigma, r$  such that  $\frac{\sigma}{r^2} \in ]0, \frac{1}{d}[$ , we denote by  $l = l\left(\frac{\sigma}{r^2}\right)$  the unique positive solution of  $\lambda(l) = \frac{\sigma}{r^2}l$  with

$$\lambda(l) = \frac{\int_0^{\pi} \cos \theta e^{l \cos \theta} \sin^{d-2} \theta \, \mathrm{d}\theta}{\int_0^{\pi} e^{l \cos \theta} \sin^{d-2} \theta \, \mathrm{d}\theta}, \quad l \in \mathbb{R}_+, \quad d \ge 2$$

Then the limit distribution  $f = \lim_{\varepsilon \searrow 0} f^{\varepsilon}$ , is a von Mises-Fisher equilibrium  $f = \rho M_{l\Omega}(\omega) \, d\omega$  on  $r \mathbb{S}^{d-1}$ , where the density  $\rho(t, x)$  and the orientation  $\Omega(t, x)$  satisfy the macroscopic equations (SOH)

$$\partial_t \rho + \operatorname{div}_x \left( \rho \frac{l\sigma}{r} \Omega \right) = 0, \quad (t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$$

Modelling 0000000000 From micro to macro: PDE models

Conclusions

Asymptotic limit

# Hydrodynamics via Asymptotic Limit

Bostan-C. (M3AS 2017)

Given a solution to

$$\partial_t f^{\varepsilon} + \operatorname{div}_x(f^{\varepsilon}v) + \frac{1}{\varepsilon^2} \operatorname{div}_v(f^{\varepsilon}(\alpha - \beta |v|^2)v) = \frac{1}{\varepsilon} \operatorname{div}_v\{f^{\varepsilon}(v - u[f^{\varepsilon}]) + \sigma \nabla_v f^{\varepsilon}\}$$

for any  $\sigma$ , r such that  $\frac{\sigma}{r^2} \in ]0, \frac{1}{d}[$ , we denote by  $l = l\left(\frac{\sigma}{r^2}\right)$  the unique positive solution of  $\lambda(l) = \frac{\sigma}{r^2}l$  with

$$\lambda(l) = \frac{\int_0^{\pi} \cos \theta e^{l \cos \theta} \sin^{d-2} \theta \, \mathrm{d}\theta}{\int_0^{\pi} e^{l \cos \theta} \sin^{d-2} \theta \, \mathrm{d}\theta}, \quad l \in \mathbb{R}_+, \quad d \ge 2.$$

Then the limit distribution  $f = \lim_{\varepsilon \searrow 0} f^{\varepsilon}$ , is a von Mises-Fisher equilibrium  $f = \rho M_{l\Omega}(\omega) \, d\omega$  on  $r \mathbb{S}^{d-1}$ , where the density  $\rho(t, x)$  and the orientation  $\Omega(t, x)$  satisfy the macroscopic equations (SOH)

$$\partial_t 
ho + \operatorname{div}_x \left( 
ho rac{l\sigma}{r} \Omega 
ight) = 0, \ (t,x) \in \mathbb{R}_+ imes \mathbb{R}^d$$
 $\partial_t \Omega + k_d \ r(\Omega \cdot 
abla_x) \Omega + rac{r}{l} (I_d - \Omega \otimes \Omega) rac{
abla_x 
ho}{
ho} = 0$ 

Modelling 0000000000 From micro to macro: PDE models

Phase Transition for Cucker-Smale

Reduced Hydrodynamics ○●○○○ Conclusions

Asymptotic limit

# Hydrodynamics via Asymptotic Limit

Bostan-C. (M3AS 2017)

Given a solution to

$$\partial_t f^{\varepsilon} + \operatorname{div}_x(f^{\varepsilon}v) + \frac{1}{\varepsilon^2} \operatorname{div}_v(f^{\varepsilon}(\alpha - \beta |v|^2)v) = \frac{1}{\varepsilon} \operatorname{div}_v\{f^{\varepsilon}(v - u[f^{\varepsilon}]) + \sigma \nabla_v f^{\varepsilon}\}$$

for any  $\sigma$ , r such that  $\frac{\sigma}{r^2} \in ]0, \frac{1}{d}[$ , we denote by  $l = l\left(\frac{\sigma}{r^2}\right)$  the unique positive solution of  $\lambda(l) = \frac{\sigma}{r^2}l$  with

$$\lambda(l) = \frac{\int_0^{\pi} \cos \theta e^{l \cos \theta} \sin^{d-2} \theta \, \mathrm{d}\theta}{\int_0^{\pi} e^{l \cos \theta} \sin^{d-2} \theta \, \mathrm{d}\theta}, \quad l \in \mathbb{R}_+, \quad d \ge 2.$$

Then the limit distribution  $f = \lim_{\varepsilon \searrow 0} f^{\varepsilon}$ , is a von Mises-Fisher equilibrium  $f = \rho M_{l\Omega}(\omega) \, d\omega$  on  $r \mathbb{S}^{d-1}$ , where the density  $\rho(t, x)$  and the orientation  $\Omega(t, x)$  satisfy the macroscopic equations (SOH)

$$\partial_t 
ho + \operatorname{div}_x \left( 
ho rac{l\sigma}{r} \Omega 
ight) = 0, \ (t,x) \in \mathbb{R}_+ imes \mathbb{R}^d$$
 $\partial_t \Omega + k_d \ r(\Omega \cdot 
abla_x) \Omega + rac{r}{l} (I_d - \Omega \otimes \Omega) rac{
abla_x 
ho}{
ho} = 0$ 

| Modelling<br>0000000000 | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics<br>○○●○○ | Conclusions |
|-------------------------|---------------------------------|-----------------------------------|--------------------------------|-------------|
| Asymptotic limit        |                                 |                                   |                                |             |

## Expansion

The behavior of the family  $(f^{\varepsilon})_{\varepsilon>0}$ , as the parameter  $\varepsilon$  becomes small, follows by analyzing the formal expansion

 $f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$ 

Plugging the above Ansatz into the kinetic equation, leads to the constraints

 $\operatorname{div}_{v}\{f(\alpha-\beta|v|^{2})v\}=0$ 

 $\operatorname{div}_{v}\left\{f^{(1)}(\alpha-\beta|v|^{2})v\right\} = \operatorname{div}_{v}\left\{f(v-u[f]) + \sigma\nabla_{v}f\right\} := Q(f)$ 

and to the time evolution equations

$$\partial_t f + \operatorname{div}_x(fv) + \operatorname{div}_v\{f^{(2)}(\alpha - \beta |v|^2)v\} = \mathcal{L}_f(f^{(1)})$$

with

$$\mathcal{L}_{f}(f^{(1)}) := \operatorname{div}_{v}\{f^{(1)}(v - u[f]) + \sigma \nabla_{v} f^{(1)}\} - \operatorname{div}_{v}\left\{f \frac{\int_{\mathbb{R}^{d}} f^{(1)}(v' - u[f]) \, \mathrm{d}v'}{\int_{\mathbb{R}^{d}} f \, \mathrm{d}v'}\right\}$$

cutting the development at second order.

| Modelling<br>000000000 | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics<br>○○●○○ | Conclusions |
|------------------------|---------------------------------|-----------------------------------|--------------------------------|-------------|
| Asymptotic limit       |                                 |                                   |                                |             |

## Expansion

The behavior of the family  $(f^{\varepsilon})_{\varepsilon>0}$ , as the parameter  $\varepsilon$  becomes small, follows by analyzing the formal expansion

 $f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$ 

Plugging the above Ansatz into the kinetic equation, leads to the constraints

 $\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$ 

$$\operatorname{div}_{v}\left\{f^{(1)}(\alpha-\beta|v|^{2})v\right\} = \operatorname{div}_{v}\left\{f(v-u[f]) + \sigma\nabla_{v}f\right\} := Q(f)$$

and to the time evolution equations

$$\partial_t f + \operatorname{div}_x(fv) + \operatorname{div}_v\{f^{(2)}(\alpha - \beta |v|^2)v\} = \mathcal{L}_f(f^{(1)})$$

with

$$\mathcal{L}_{f}(f^{(1)}) := \operatorname{div}_{v}\{f^{(1)}(v - u[f]) + \sigma \nabla_{v} f^{(1)}\} - \operatorname{div}_{v}\left\{f \frac{\int_{\mathbb{R}^{d}} f^{(1)}(v' - u[f]) \, \mathrm{d}v'}{\int_{\mathbb{R}^{d}} f \, \mathrm{d}v'}\right\}$$

cutting the development at second order.

| Modelling<br>000000000 | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| Asymptotic limit       |                                 |                                   |                       |             |

## Expansion

The behavior of the family  $(f^{\varepsilon})_{\varepsilon>0}$ , as the parameter  $\varepsilon$  becomes small, follows by analyzing the formal expansion

 $f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$ 

Plugging the above Ansatz into the kinetic equation, leads to the constraints

 $\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$ 

$$\operatorname{div}_{v}\left\{f^{(1)}(\alpha-\beta|v|^{2})v\right\} = \operatorname{div}_{v}\left\{f(v-u[f]) + \sigma\nabla_{v}f\right\} := Q(f)$$

and to the time evolution equations

$$\partial_t f + \operatorname{div}_x(fv) + \operatorname{div}_v\{f^{(2)}(\alpha - \beta |v|^2)v\} = \mathcal{L}_f(f^{(1)})$$

with

$$\mathcal{L}_{f}(f^{(1)}) := \operatorname{div}_{v}\{f^{(1)}(v - u[f]) + \sigma \nabla_{v} f^{(1)}\} - \operatorname{div}_{v}\left\{f \frac{\int_{\mathbb{R}^{d}} f^{(1)}(v' - u[f]) \, \mathrm{d}v'}{\int_{\mathbb{R}^{d}} f \, \mathrm{d}v'}\right\}$$

cutting the development at second order.

| Modelling        | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000        | 000000                          | 0000000000000000                  | 00000                 |             |
| Asymptotic limit |                                 |                                   |                       |             |

## First term

#### Oth-order term in expansion

Assume that  $(1 + |v|^2)F \in \mathcal{M}_b^+(\mathbb{R}^d)$ . Then *F* solves  $\operatorname{div}_v\{F(\alpha - \beta |v|^2)v\} = 0$  in  $\mathcal{D}'(\mathbb{R}^d)$  *i.e.*,

$$\int_{\mathbb{R}^d} (\alpha - \beta |v|^2) v \cdot \nabla_v \varphi \, \mathrm{d}F(v) = 0, \text{ for any } \varphi \in C_c^1(\mathbb{R}^d)$$

#### if and only if supp $F \subset \{0\} \cup r\mathbb{S}$ .

Let  $F \in \mathcal{M}_b^+(\mathbb{R}^d)$  be a non negative bounded measure on  $\mathbb{R}^d$ . We denote by  $\langle F \rangle$  the measure corresponding to the linear application

$$\psi \to \int_{\mathbb{R}^d} \psi(v) \, \mathbf{1}_{v=0} F(v) + \int_{\mathbb{R}^d} \psi\left(r \frac{v}{|v|}\right) \, \mathbf{1}_{v \neq 0} F(v) \,,$$

for all  $\psi \in C_c^0(\mathbb{R}^d)$ .

#### Elimination

For any  $f \in \mathcal{M}_b^+(\mathbb{R}^d \times \mathbb{R}^d)$  such that  $\operatorname{div}_v\{f(\alpha - \beta |v|^2)v\} \in \mathcal{M}_b(\mathbb{R}^d \times \mathbb{R}^d)$ , we have  $\langle \operatorname{div}_v\{f(\alpha - \beta |v|^2)v\} \rangle = 0$ .

| Modelling        | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000        | 000000                          | 00000000000000000                 | 00000                 |             |
| Asymptotic limit |                                 |                                   |                       |             |

## First term

#### Oth-order term in expansion

Assume that  $(1 + |v|^2)F \in \mathcal{M}_b^+(\mathbb{R}^d)$ . Then *F* solves  $\operatorname{div}_v\{F(\alpha - \beta |v|^2)v\} = 0$  in  $\mathcal{D}'(\mathbb{R}^d)$  *i.e.*,

$$\int_{\mathbb{R}^d} (\alpha - \beta |v|^2) v \cdot \nabla_v \varphi \, \mathrm{d}F(v) = 0, \text{ for any } \varphi \in C_c^1(\mathbb{R}^d)$$

if and only if supp $F \subset \{0\} \cup r\mathbb{S}$ .

Let  $F \in \mathcal{M}_b^+(\mathbb{R}^d)$  be a non negative bounded measure on  $\mathbb{R}^d$ . We denote by  $\langle F \rangle$  the measure corresponding to the linear application

$$\psi \to \int_{\mathbb{R}^d} \psi(v) \, \mathbf{1}_{v=0} F(v) + \int_{\mathbb{R}^d} \psi\left(r \frac{v}{|v|}\right) \, \mathbf{1}_{v\neq 0} F(v) \, ,$$

for all  $\psi \in C_c^0(\mathbb{R}^d)$ .

#### Elimination

For any  $f \in \mathcal{M}_b^+(\mathbb{R}^d \times \mathbb{R}^d)$  such that  $\operatorname{div}_v\{f(\alpha - \beta |v|^2)v\} \in \mathcal{M}_b(\mathbb{R}^d \times \mathbb{R}^d)$ , we have  $\langle \operatorname{div}_v\{f(\alpha - \beta |v|^2)v\} \rangle = 0$ .

| Modelling        | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000        | 000000                          | 0000000000000000                  | 00000                 |             |
| Asymptotic limit |                                 |                                   |                       |             |

## First term

#### Oth-order term in expansion

Assume that  $(1 + |v|^2)F \in \mathcal{M}_b^+(\mathbb{R}^d)$ . Then *F* solves  $\operatorname{div}_v\{F(\alpha - \beta |v|^2)v\} = 0$  in  $\mathcal{D}'(\mathbb{R}^d)$  *i.e.*,

$$\int_{\mathbb{R}^d} (\alpha - \beta |v|^2) v \cdot \nabla_v \varphi \, \mathrm{d}F(v) = 0, \text{ for any } \varphi \in C_c^1(\mathbb{R}^d)$$

if and only if supp $F \subset \{0\} \cup r\mathbb{S}$ .

Let  $F \in \mathcal{M}_b^+(\mathbb{R}^d)$  be a non negative bounded measure on  $\mathbb{R}^d$ . We denote by  $\langle F \rangle$  the measure corresponding to the linear application

$$\psi \to \int_{\mathbb{R}^d} \psi(v) \, \mathbf{1}_{v=0} F(v) + \int_{\mathbb{R}^d} \psi\left(r \frac{v}{|v|}\right) \, \mathbf{1}_{v\neq 0} F(v) \, ,$$

for all  $\psi \in C_c^0(\mathbb{R}^d)$ .

#### Elimination

For any  $f \in \mathcal{M}_b^+(\mathbb{R}^d \times \mathbb{R}^d)$  such that  $\operatorname{div}_v\{f(\alpha - \beta |v|^2)v\} \in \mathcal{M}_b(\mathbb{R}^d \times \mathbb{R}^d)$ , we have  $\langle \operatorname{div}_v\{f(\alpha - \beta |v|^2)v\} \rangle = 0$ .

| Modelling        | From micro to macro: PDE models | Phase Transition for Cucker-Smale       | Reduced Hydrodynamics | Conclusions |
|------------------|---------------------------------|-----------------------------------------|-----------------------|-------------|
| 000000000        | 000000                          | 000000000000000000000000000000000000000 | 0000                  |             |
| Asymptotic limit |                                 |                                         |                       |             |

## Von Mises Distribution

For any  $l \in \mathbb{R}_+$ ,  $\Omega \in \mathbb{S}$ , we introduce the von Mises-Fisher distribution

$$M_{l\Omega}(\omega) \, \mathrm{d}\omega = \frac{\exp\left(l\Omega \cdot \frac{\omega}{r}\right)}{\int_{r\mathbb{S}^{d-1}} \exp\left(l\Omega \cdot \frac{\omega'}{r}\right) \, \mathrm{d}\omega'} \, \mathrm{d}\omega, \ \omega \in r\mathbb{S}^{d-1}.$$

Kernel of the averaged collision operator

Let  $F \in \mathcal{M}_b^+(\mathbb{R}^d)$  be a non negative bounded measure on  $\mathbb{R}^d$ , supported in  $r\mathbb{S}^{d-1}$ . The following statements are equivalent: 1.  $\langle Q(F) \rangle = 0$ , that is

$$\int_{v\neq 0} \left\{ -(v-u[F]) \cdot \nabla_v \left[ \widetilde{\psi} \left( r \frac{v}{|v|} \right) \right] + \sigma \Delta_v \left[ \widetilde{\psi} \left( r \frac{v}{|v|} \right) \right] \right\} F \text{ div} = 0,$$

for all  $\widetilde{\psi} \in C^2(r\mathbb{S}^{d-1})$ . 2. There are  $\rho \in \mathbb{R}_+, \Omega \in \mathbb{S}$  such that  $F = \rho M_{l\Omega} d\omega$  where  $l \in \mathbb{R}_+$  satisfies

$$\frac{\int_0^{\pi} \cos \theta \ e^{l \cos \theta} \sin^{d-2} \theta \ d\theta}{\int_0^{\pi} e^{l \cos \theta} \sin^{d-2} \theta \ d\theta} = \frac{\sigma}{r^2} l.$$

| Modelling        | From micro to macro: PDE models | Phase Transition for Cucker-Smale | Reduced Hydrodynamics | Conclusions |
|------------------|---------------------------------|-----------------------------------|-----------------------|-------------|
| 000000000        | 000000                          | 000000000000000                   | 0000                  |             |
| Asymptotic limit |                                 |                                   |                       |             |

## Von Mises Distribution

For any  $l \in \mathbb{R}_+$ ,  $\Omega \in \mathbb{S}$ , we introduce the von Mises-Fisher distribution

$$M_{l\Omega}(\omega) \, \mathrm{d}\omega = \frac{\exp\left(l\Omega \cdot \frac{\omega}{r}\right)}{\int_{r\mathbb{S}^{d-1}} \exp\left(l\Omega \cdot \frac{\omega'}{r}\right) \, \mathrm{d}\omega'} \, \mathrm{d}\omega, \ \omega \in r\mathbb{S}^{d-1}.$$

Kernel of the averaged collision operator

Let  $F \in \mathcal{M}_b^+(\mathbb{R}^d)$  be a non negative bounded measure on  $\mathbb{R}^d$ , supported in  $r\mathbb{S}^{d-1}$ . The following statements are equivalent: 1.  $\langle Q(F) \rangle = 0$ , that is

 $\int_{v\neq 0} \left\{ -(v-u[F]) \cdot \nabla_v \left[ \widetilde{\psi} \left( r \frac{v}{|v|} \right) \right] + \sigma \Delta_v \left[ \widetilde{\psi} \left( r \frac{v}{|v|} \right) \right] \right\} F \text{ div} = 0,$ 

for all  $\widetilde{\psi} \in C^2(r\mathbb{S}^{d-1})$ . 2. There are  $\rho \in \mathbb{R}_+, \Omega \in \mathbb{S}$  such that  $F = \rho M_{l\Omega} d\omega$  where  $l \in \mathbb{R}_+$  satisfies

$$\frac{\int_0^{\pi} \cos \theta \ e^{l \cos \theta} \sin^{d-2} \theta \ d\theta}{\int_0^{\pi} e^{l \cos \theta} \sin^{d-2} \theta \ d\theta} = \frac{\sigma}{r^2} l.$$

- Stability of the symmetric and non-symmetric stationary states as solutions of the homogeneous problem is not analytically known.
- Uniqueness of the non symmetric equilibria except symmetries is open.
- Phase transitions from ordered to disordered state driven by noise in the inhomogeneous case should be explored.
- Reduced Hydrodynamics recovered from the whole space local Cucker-Smale model with noise by asymptotic limits.
- References:
  - Orsogna-Panferov (KRM 2008).
  - C.-Fornasier-Rosado-Toscani (SIMA 2010).
  - 3 C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
  - C.-Klar-Martin-Tiwari (M3AS 2010).
  - Cañizo-C.-Rosado (M3AS 2011).
  - **O Bolley-Cañizo-C. (M3AS 2011 & AML 2011).**
  - Albi-Balagué-C.-VonBrecht (SIAP 2014).
  - Bostan-C. (Nolinear Analysis: Real World Applications 2013 & 2017).
  - Barbaro-Cañizo-C.-Degond (Multiscale Model. and Simulation 2016).

- Stability of the symmetric and non-symmetric stationary states as solutions of the homogeneous problem is not analytically known.
- Uniqueness of the non symmetric equilibria except symmetries is open.
- Phase transitions from ordered to disordered state driven by noise in the inhomogeneous case should be explored.
- Reduced Hydrodynamics recovered from the whole space local Cucker-Smale model with noise by asymptotic limits.
- References:
  - ① C.-D'Orsogna-Panferov (KRM 2008).
  - C.-Fornasier-Rosado-Toscani (SIMA 2010).
  - 3 C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
  - C.-Klar-Martin-Tiwari (M3AS 2010).
  - Cañizo-C.-Rosado (M3AS 2011).
  - **O Bolley-Cañizo-C. (M3AS 2011 & AML 2011).**
  - Albi-Balagué-C.-VonBrecht (SIAP 2014).
  - Bostan-C. (Nolinear Analysis: Real World Applications 2013 & 2017).
  - Barbaro-Cañizo-C.-Degond (Multiscale Model. and Simulation 2016).

- Stability of the symmetric and non-symmetric stationary states as solutions of the homogeneous problem is not analytically known.
- Uniqueness of the non symmetric equilibria except symmetries is open.
- Phase transitions from ordered to disordered state driven by noise in the inhomogeneous case should be explored.
- Reduced Hydrodynamics recovered from the whole space local Cucker-Smale model with noise by asymptotic limits.
- References:
  - ① C.-D'Orsogna-Panferov (KRM 2008).
  - 2 C.-Fornasier-Rosado-Toscani (SIMA 2010).
  - 3 C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
  - C.-Klar-Martin-Tiwari (M3AS 2010).
  - Cañizo-C.-Rosado (M3AS 2011).
  - **O Bolley-Cañizo-C. (M3AS 2011 & AML 2011).**
  - Albi-Balagué-C.-VonBrecht (SIAP 2014).
  - Bostan-C. (Nolinear Analysis: Real World Applications 2013 & 2017).
  - Barbaro-Cañizo-C.-Degond (Multiscale Model. and Simulation 2016).

- Stability of the symmetric and non-symmetric stationary states as solutions of the homogeneous problem is not analytically known.
- Uniqueness of the non symmetric equilibria except symmetries is open.
- Phase transitions from ordered to disordered state driven by noise in the inhomogeneous case should be explored.
- Reduced Hydrodynamics recovered from the whole space local Cucker-Smale model with noise by asymptotic limits.
- References:
  - ① C.-D'Orsogna-Panferov (KRM 2008).
  - 2 C.-Fornasier-Rosado-Toscani (SIMA 2010).
  - 3 C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
  - C.-Klar-Martin-Tiwari (M3AS 2010).
  - Cañizo-C.-Rosado (M3AS 2011).
  - **O Bolley-Cañizo-C. (M3AS 2011 & AML 2011).**
  - Albi-Balagué-C.-VonBrecht (SIAP 2014).
  - Bostan-C. (Nolinear Analysis: Real World Applications 2013 & 2017).
  - Barbaro-Cañizo-C.-Degond (Multiscale Model. and Simulation 2016).

- Stability of the symmetric and non-symmetric stationary states as solutions of the homogeneous problem is not analytically known.
- Uniqueness of the non symmetric equilibria except symmetries is open.
- Phase transitions from ordered to disordered state driven by noise in the inhomogeneous case should be explored.
- Reduced Hydrodynamics recovered from the whole space local Cucker-Smale model with noise by asymptotic limits.
- References:
  - C.-D'Orsogna-Panferov (KRM 2008).
  - C.-Fornasier-Rosado-Toscani (SIMA 2010).
  - C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
  - C.-Klar-Martin-Tiwari (M3AS 2010).
  - Cañizo-C.-Rosado (M3AS 2011).
  - **O** Bolley-Cañizo-C. (M3AS 2011 & AML 2011).
  - Albi-Balagué-C.-VonBrecht (SIAP 2014).
  - **8** Bostan-C. (M3AS 2013 & 2017).
  - Barbaro-Cañizo-C.-Degond (Multiscale Model. and Simulation 2016).